CHROM. 17 710

GAS-LIQUID CHROMATOGRAPHIC ANALYSES

XLIII*. RETENTION INCREMENTS FOR 2-CHLORO-, 2,2-DICHLORO-AND 2,2,2-TRICHLOROETHYL ESTERS OF ALIPHATIC C_2 - C_{20} *n*-ALKA-NOIC ACIDS ON SE-30 AND OV-351 CAPILLARY COLUMNS

ILPO O. O. KORHONEN

Department of Chemistry, University of Jyväskylä, Kyllikinkatu 1-3, SF-40100 Jyväskylä 10 (Finland) (Received March 11th, 1985)

SUMMARY

The Kováts retention indices for ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl esters of aliphatic C_2 - C_{20} *n*-alkanoic acids were determined on a low-polarity (SE-30) and a highly polar (OV-351) capillary column at different temperatures. The increments in retention indices for the methylene groups and chlorine atoms are examined and discussed, and the results compared with those from earlier studies with corresponding aliphatic and aromatic esters.

INTRODUCTION

Previous gas chromatographic (GC) studies of the haloalkyl esters involved the retention behaviour of the chloromethyl esters of aliphatic C_2-C_{20} *n*-alkanoic acids¹, *n*- $C_3-C_{12}^{2,3}$ and C_5^4 alkanoic and monochloroalkanoic acids, chloroalkyl esters of acetic^{5,6} and chloroacetic acids⁷, 2-haloethyl esters of lower alkanoic acids¹, *n*- $C_3-C_{12}^{2,3}$ and C_5^4 alkanoic and monochloroalkanoic acids, chloroalkyl GC separations of a mixture of ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl esters of aliphatic C_2-C_{20} *n*-alkanoic acids¹² and of benzoic and monochlorobenzoic acids¹³ were reported on low-polarity (SE-30) and highly polar (OV-351) capillary columns. The Kováts retention indices and the retention index increments for the chlorine substituents both on the acyl and alkyl chains of the aromatic esters¹³ were examined and discussed.

This work extends the earlier studies by determining the Kováts retention indices for ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl esters of aliphatic C_2-C_{20} *n*-alkanoic acids on SE-30 and OV-351 capillary columns at different temperatures. The retention index increments, determined based on data obtained with temperature programming, show the effects of the methylene groups and the various chlorine atoms. The results are compared with those reported previously for

^{*} For Part XLII, see I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 328 (1985) 325.

various aliphatic 2-chloroethyl and 2,2,2-trichloroethyl esters on OV-101, SE-54, SP-400 and SP-1000 stationary phases by Komárek *et al.*⁸⁻¹⁰. Comparisons are also made with data for the corresponding esters of benzoic and monochlorobenzoic acids¹³. The retention indices of the aliphatic ω -chlorinated ethyl esters on the polar capillary columns have not been reported previously and the retention indices for the aliphatic 2,2-dichloroethyl esters are generally lacking.

EXPERIMENTAL

Materials

Ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl esters of aliphatic C_2 - C_{20} *n*-alkanoic acids were prepared as described earlier¹². Mixtures of *n*-alkanes were obtained from different commercial sources.

Methods

GC analyses were carried out on a Perkin-Elmer Sigma 3 gas chromatograph under the following operating conditions: injection and flame-ionization detection (FID) temperatures, 275°C; nitrogen (SE-30) and hydrogen (OV-351) carrier gas flowrates for methane at 160°C, 14.0 and 46.3 cm sec⁻¹, respectively; splitting ratio, 1:25; chart speed, 10 mm min⁻¹. The columns used were a vitreous silica SE-30 wall-coated open-tubular (WCOT) column (25 m \times 0.33 mm I.D.), supplied by SGE (North Melbourne, Australia), and a fused silica OV-351 WCOT column (25 m \times 0.32 mm I.D.), supplied by Orion Analytica (Espoo, Finland). The column temperature was programmed from 100 to 320°C (SE-30) and from 100 to 230°C (OV-351) at 6°C min⁻¹ and on OV-351 was held at 230°C until elution of peaks had ceased. The isothermal data were obtained at the temperatures shown in Tables I and II.

The retention times were measured from the time of sample injection with a Hewlett-Packard Model 3390A reporting integrator. The Kováts retention indices were calculated off-line by using two appropriate adjacent *n*-alkanes as described earlier¹⁴. The dead volumes were determined by the injection of methane.

Each of the four groups of esters and *n*-alkanes were chromatographed separately in turn.

RESULTS AND DISCUSSION

The retention indices of the ethyl and ω -chloroethyl esters studied determined on a low-polarity (SE-30) and a highly polar (OV-351) capillary column at different temperatures are presented in Tables I and II, respectively. Fig. 1 shows the retention index plots for the four series of esters, obtained on the two columns with temperature programming.

The separation of a mixture of all 76 individual esters studied was previously examined on SE-30 and OV-351 with temperature programming¹² and it is evident that the elution order reported for the compounds is practically the same on the two columns under the various isothermal conditions used.

The data in Tables I and II show that it is especially useful to analyse complex mixtures of compounds with a wide range of chain lengths using temperature programming, *viz.*, all the compounds can be analysed in the same experiment, the analysis time being thus reduced enormously and the retention indices observed are nearly identical with those found under isothermal conditions (Tables I and II).

Fig. 1. Plots showing retentions of ethyl (curve 1), 2-chloroethyl (curve 2), 2,2-dichloroethyl (curve 3) and 2,2,2-trichloroethyl (curve 4) esters of aliphatic C_2-C_{20} *n*-alkanoic acids, analysed on SE-30 (\bigcirc) and OV-351 (\bigcirc) capillary columns with temperature programming (Tables I and II). I = Retention index units (i.u.). Numbers on abscissa indicate the chain length of the *n*-acid.

The retention indices on SE-30 (Table I) are in good accord with those reported previously by Komárek *et al.* on low-polarity SP-400⁸ and OV-101⁹ glass capillary columns for the three homologous series, *i.e.*, ethyl, 2-chloroethyl and 2,2,2-trichloroethyl esters of aliphatic C_2 - C_{10} *n*-alkanoic acids.

The increased retentions that occurred on the highly polar OV-351 capillary column are shown in Table II and particularly in Table III, where a comparison between the retention behaviour of the esters on SE-30 and OV-351, based on data

TABLE I

RETENTION INDICES FOR ETHYL AND ω -CHLOROETHYL ESTERS OF ALIPHATIC C₂-C₂₀ *n*-AL-KANOIC ACIDS, OBTAINED ON AN SE-30 CAPILLARY COLUMN AT DIFFERENT TEMPERATURES

Chain length of	Column tempe	rature							
ester of n-acta	Programmed*	E.t.* (°C)	140°C	160°C	180°C	200°C	220°C	240°C	260°C
Ethyl ester									
C ₂	624	118	655	700	760	-	_	_	
C ₃	712	120	707	739	788	_		_	—
C₄	800	122	796	806	846	910	_	_	_
C ₅	893	126	883	896	913	950	980	_	_
C ₆	993	132	979	989	1000	1023	1031	1082	-
C ₇	1088	140	1077	1081	1096	1119	1116	1134	
C ₈	1190	150	1176	1178	1187	1193	1218	1219	1099
C,	1288	161	1274	1277	1284	1284	1304	1314	1209
C ₁₀	1386	173	1376	1378	1380	1385	1400	1405	1320
C ₁₁	1483	185	1476	1477	1478	1479	1493	1500	1446
C ₁₂	1581	197	1576	1578	1578	1577	1588	1594	1549
C ₁₃	1681	208	1677	1676	1676	1678	1689	1693	1667
C14	1779	219	1777	1777	1777	1779	1787	1788	1766
C15	1878	230	-	1876	1876	1879	1884	1887	1867
C ₁₆	1978	241	_	1976	1976	1979	1982	1983	1973
C17	2077	251		_	2074	2078	2082	2083	2073
C ₁₈	2177	260	_	_	2175	2179	2183	2179	2175
C19	2277	270	_	_	_	2278	2282	2281	2277
C ₂₀	2379	278	—	-	-	2378	2383	2382	2378
2-Chloroethyl est	er								
C ₂	828	123	816	828	846	_	_	-	
C ₃	916	127	903	909	920	950	961	1027	-
C ₄	1004	133	990	976	1010	1023	1031	1100	-
C5	1103	142	1090	1086	1109	1119	1126	1174	_
C ₆	1203	152	1192	1187	1202	1207	1218	1262	1108
C ₇	1302	163	1292	1290	1300	1305	1313	1345	1230
C ₈	1401	175	1391	1392	1399	1400	1406	1430	1350
C,	1500	187	1492	1493	1497	1497	1505	1526	1477
C10	1600	199	1591	1593	1596	1596	1604	1622	1600
C11	1701	211	1693	1693	1697	1699	1712	1725	1693
C12	1801	222	1792	1793	1 79 7	1800	1808	1815	1797
C ₁₃	1902	233	-	1893	1896	1903	1907	1915	1902
C14	2004	243	_	1994	1996	2002	2004	2011	2009
C15	2105	253	-	-	2094	2102	2107	2112	2107
C ₁₆	2207	263	-		2196	2202	2207	2212	2210
C17	2308	272	_	_	—	2302	2309	2315	2312
C18	2411	281	_	_	_	2403	2409	2414	2412
C19	2513	290	-	-	-	_	2510	2515	2511
C ₂₀	2614	298	—	-	-	-	2611	2616	2612
2,2-Dichloroethyl	l ester								
C ₂	899	126	892	911	919	942	9 77	_	_
C ₃	99 7	133	988	989	991	1010	1035	_	_
C4	1092	140	1080	1081	1089	1105	1126	1123	1098
C ₅	1191	151	1178	1184	1180	1200	1224	1219	1201

TABLE I (continued)

Chain length of ester of n-acid	Column tempe	rature							
	Programmed*	E.t.* (°C)	140°C	160°C	180°C	200°C	220°C	240°C	260°C
C ₆	1289	161	1278	1282	1283	1297	1318	1314	1300
C ₇	1388	173	1378	1381	1384	1392	1412	1405	1392
C ₈	1486	185	1477	1483	1486	1 49 0	1502	1500	1494
C ₉	1588	197	1577	1583	1586	1587	1600	1597	1609
C ₁₀	1689	209	1678	1681	1685	1690	1701	1704	1711
C11	1790	221	1778	1781	1785	1791	1799	1800	1809
C ₁₂	1891	231	-	1880	1884	1893	1899	1905	1909
C ₁₃	1993	242	-	1981	1986	1992	1998	2003	2014
C14	2095	252	_	-	2082	2092	2100	2106	2115
C15	2197	262	-	_	2184	2193	2201	2202	2214
C ₁₆	2301	272	—	_	_	2293	2301	2305	2315
C ₁₇	2405	281		_	_	2395	2402	2406	2413
C ₁₈	2507	290	_	_	_	-	2503	2508	2512
C ₁₉	2608	298	_		_	_	2603	2608	2612
C ₂₀	2708	306	—	-	_	-	2704	2709	2715
2,2,2-Trichloroet	hyl ester								
C ₂	988	131	974	978	991	999	-		
C ₃	1087	140	1078	1080	1089	1094	1101	1100	_
C4	1185	150	1180	1183	1191	1207	1218	1219	1166
C ₅	1286	161	1278	1277	1284	1289	1309	1318	1288
C ₆	1384	173	1378	1376	1378	1379	1390	1400	1384
C ₇	1482	185	1478	1477	1477	1478	1479	1484	1484
C ₈	1579	196	1578	1577	1578	1574	1577	1574	1574
C,	1678	208	1679	1676	1678	1674	1675	1680	1678
C ₁₀	1776	219	1778	1776	1778	1776	1779	1780	1779
C11	1875	230	-	1875	1877	1877	1876	1878	1879
C ₁₂	1977	240	-	1976	1977	1977	1974	1976	1981
C13	2074	250	-	_	2074	2077	2076	2077	2079
C14	2175	260	-	-	2175	2177	2177	2176	2177
C15	2274	269	_	_	-	2276	2278	2278	2277
C ₁₆	2376	27 9	-	_	-	2377	2378	2379	2378
C ₁₇	2481	287	-	_	-	_	2474	2482	2486
C ₁₈	2582	296		_	-	-	2575	2583	2588
C ₁₉	2685	304	-	-	-	-	2676	2683	2690
C ₂₀	2785	312	-	_	_	-	2776	2783	2790

* From 100 to 325°C at 6°C min⁻¹; E.t. = elution temperature.

obtained with temperature programming, is presented. The enhancements for the ethyl esters are in the range 257–279 retention index units (i.u.), those for the mono-, di- and trichloroethyl esters being higher, *i.e.*, in the ranges 465–513, 468–548 and 361–450 i.u., respectively (Table III). The trends in the enhancements for the isomeric aliphatic esters are the same as previously found with the corresponding aromatic esters¹³.

The retention indices for ethanol and all ω -chlorinated ethanols were previously examined¹⁵ on the same columns as in the present work, and it is evident that on the low-polarity SE-30 column the retention always increases upon replace-

TABLE II

Chain length of Column temperature ester of n-acid Programmed^{*} E.t.* 120°C 140°C 160°C 180°C 200°C 220°C $(^{\circ}C)$ Ethyl ester C_2 C_3 _ -------**C**₄ ----C5 ____ -----_ _ C₆ C_7 C_8 C, _ C10 C11 C₁₂ C_{13} C14 C15 C_{16} C17 C18 C19 C20 _ 2-Chloroethyl ester C_2 C3 ____ C₄ C5 C6 C_7 C_8 C9 C10 C_{11} C12 C13 C14 C15 C16 C17 C18 _ -C19 ----C20 2,2-Dichloroethyl ester C_2 C₃ ----C4 _

RETENTION INDICES FOR ETHYL AND ω -CHLOROETHYL ESTERS OF ALIPHATIC C₂-C₂₀ *n*-ALKANOIC ACIDS, OBTAINED ON AN OV-351 CAPILLARY COLUMN AT DIFFERENT TEMPERATURES

GLC ANALYSES. XLIII.

TABLE II (continued)

Chain length of ester of n-acid	Column tempe	rature						
	Programmed*	E.t.* (°C)	120°C	140°C	160°C	180°C	200°C	220°C
C ₅	1678	133	1660	1685	1669	1705	1657	<u> </u>
C ₆	1765	141	1754	1775	1758	1797	1756	-
C ₇	1860	149	1850	1869	1852	1886	1854	1900
C ₈	1956	158	1946	1963	1952	1982	1963	2001
C ₉	2056	167	2046	2061	2055	2078	2072	2100
C10	2158	177	2146	2158	2157	2175	2175	2197
C11	2260	186	2245	2256	2255	2274	2275	2294
C ₁₂	2363	195	2348	2357	2354	2373	2378	2392
C ₁₃	2467	204		2456	2457	2476	2479	2491
C ₁₄	2573	213	-	2558	2560	2579	2581	2590
C15	2679	222		2659	2663	2680	2682	2692
C ₁₆	2780	230		_	2765	2781	2785	2792
C17	2888	230		-	2868	2884	2887	2895
C18	2992	230	_	~~		2985	2988	2999
C19	3096	230	-	_	_	3087	3091	3101
C ₂₀	3199	230	-	-	-	3189	3194	3203
2,2,2-Trichloroeth	hyl ester							
C ₂	1438	117	1422	1441	1432	1470		
C ₃	1503	120	1484	1504	1494	1532	_	_
C ₄	1573	125	1559	1580	1560	1600	_	_
C ₅	1661	132	1645	1668	1647	1688	1655	_
C ₆	1750	139	1738	1761	1739	1784	1753	—
C ₇	1843	148	1832	1854	1840	1874	1850	1898
C ₈	1940	157	1928	1948	1938	1966	1956	1997
C,	2039	166	2026	2045	2040	2065	2058	2090
C10	2142	175	2126	2140	2144	2160	2163	2183
C ₁₁	2244	185	2224	2237	2240	2260	2264	2281
C ₁₂	2349	194	2326	2337	2338	2360	2365	2386
C ₁₃	2452	203	-	2436	2440	2462	2467	2485
C ₁₄	2558	212	_	2537	2544	2565	2568	2582
C15	2666	221	_	2638	2646	2664	2670	2682
C ₁₆	2767	229	_	_	2747	2766	2772	2783
C ₁₇	2873	230		_	2849	2867	2873	2883
C18	2980	230	_	-		2969	2975	2988
C19	3084	230	-	-	_	3070	3077	3089
C ₂₀	3191	230		-		3172	3179	3192

* From 100 to 230°C at 6°C min⁻¹, then at 230°C until elution of peaks had ceased; E.t. = elution temperature.

ment of the OH group with the much larger RCOO group, as expected. For the lowest esters, *i.e.*, ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl acetates, the enhancements are 192, 205, 161 and 145 i.u., respectively, based on data obtained with temperature programming. On the highly polar OV-351 stationary phase, where the polar effects are much more significant, the corresponding acetate esters show lower retentions than the alcohols, *viz.*, the reductions observed are -26, -45, -163 and -270 i.u., respectively. The relative mobility of the esters increases

TABLE III

COMPARISON BETWEEN THE RETENTION BEHAVIOUR OF THE ESTERS STUDIED ON SE-30 (TABLE I) AND OV-351 (TABLE II), BASED ON DATA OBTAINED WITH TEMPERATURE PROGRAMMING

Chain length	Ethyl		2-Chloroel	thyl	2,2-Dichlo	roethyl	2,2,2-Tricl	hloroethyl
of n-acid	R	S	R	S	R	S	R	S
C ₂	1.43	268	1.62	513	1.64	548	1.46	450
C ₁	1.36	258	1.54	493	1.52	516	1.38	416
C₄	1.32	257	1.49	489	1.45	496	1.33	388
C.	1.30	267	1.44	483	1.41	487	1.29	375
C ₆	1.27	268	1.39	475	1.37	476	1.26	366
C ₇	1.25	272	1.36	468	1.34	472	1.24	361
Č,	1.23	271	1.33	468	1.32	470	1.23	361
C.	1.21	275	1.31	465	1.29	468	1.22	361
Cin	1.20	279	1.29	468	1.28	469	1.21	366
C ₁₁	1.18	271	1.28	468	1.26	470	1.20	369
C ₁₂	1.17	269	1.26	471	1.25	472	1.19	372
C13	1.16	265	1.25	471	1.24	474	1.18	378
C ₁₄	1.15	267	1.24	474	1.23	478	1.18	383
Cis	1.14	270	1.23	479	1.22	482	1.17	392
C16	1.14	268	1.22	483	1.21	479	1.16	391
C17	1.13	272	1.21	483	1.20	483	1.16	392
C ₁₈	1.13	274	1.20	489	1.19	485	1.15	398
Cia	1.12	276	1.19	490	1.19	488	1.15	399
C ₂₀	1.12	278	1.19	494	1.18	491	1.15	406

R =	Iov-351/	Ise-30; S	=	Iov.351	- ,	Ise-30.
-----	----------	-----------	---	---------	-----	---------

TABLE IV

INFLUENCE OF THE STATIONARY PHASE POLARITY ON THE RETENTION INDICES (1) OF ALL-PHATIC AND AROMATIC ESTERS HAVING THE SAME NUMBER OF CARBON ATOMS

Compound	Formula	SE-30		OV-351		OV-35.	1 – SE-30
		<i>I</i> *	Δ <i>Ι</i> **	<i>I</i> *	Δ <i>Γ</i> **	<i>I</i> *	<i>∆I</i> **
Ethyl heptanoate Ethyl benzoate	C9H18O2 C9H10O2	1088 11 43	55	1360 1674	314	272 531	259
2-Chloroethyl heptanoate 2-Chloroethyl benzoate	C9H17ClO2 C9H9ClO2	1302 1368	66	1770 2138	368	468 770	302
2,2-Dichloroethyl heptanoate 2,2-Dichloroethyl benzoate	C9H16Cl2O2 C9H8Cl2O2	1388 1459	71	1860 2238	378	472 779	307
2,2,2-Trichloroethyl heptanoate 2,2,2-Trichloroethyl benzoate	C9H15Cl3O2 C9H7Cl3O2	1482 1531	49	1843 2208	365	361 677	316

* Determined with temperature programming from 100°C at 6°C min⁻¹; the retention indices for the heptanoic acid esters are taken from Tables I and II, and those for the benzoic acid esters from ref. 13.

** $\Delta I = I_{\text{benzoic acid ester}} - I_{\text{heptanoic acid ester}}$

TABLE V

INCREMENTS OF RETENTION INDICES FOR METHYLENE GROUPS AND CHLORINE ATOMS, OBTAINED ON SE-30 WITH TEMPERATURE PROGRAMMING

Chain length	Ethyl	2-Chloro	oethyl		2,2-Dich	loroethyl			2,2,2-Tr	ichloroethyl			
o) n-acta		Alcn ₂	ΣΔI _{ci} *	41 ₁₀ **	AI _{CH2}	Edlci*	411ci**	41 _{2C1} ***	<i>AI</i> _{CH2}	ΣdI _{ci} *	4I1c1**	41 _{2C1} ***	<i>AI</i> 3cı ^{\$}
C,	I	1	204	204	1	275	204	71	 1	364	204	71	68
C,	88%	88 ^{%8}	204	204	98	285	204	81	66	375	204	81	8
C4	88%	88 [%]	204	204	95	292	204	88	98	385	204	88	93
C,	93	66	210	210	66	298	210	88	101	393	210	88	95
C,	100	100	210	210	<u>98</u>	296	210	86	98	391	210	86	95
C ₇	95	66	214	214	66	300	214	86	98	394	214	86	46
° C	102	66	211	211	8 6	296	211	85	76	389	211	85	93
റ	98	6 6	212	212	102	300	212	88	66	390	212	88	8
C ₁₀	98	100	214	214	101	303	214	89	<u>8</u> 6	390	214	89	87
C ₁₁	97	101	218	218	101	307	218	89	66	392	218	89	85
C ₁₂	98	100	220	220	101	310	220	8	102	396	220	96	86
C ₁₃	100	101	221	221	102	312	221	16	97	393	221	16	81
C14	<u>98</u>	102	225	225	102	316	225	91	101	396	225	91	80
C15	66	101	227	227	102	319	227	92	8	396	227	92	11
C ₁₆	100	102	229	229	104	323	229	94	102	398	229	94	75
C17	8	101	231	231	104	328	231	76	105	404 404	231	57	76
C ₁₈	100	103	234	234	102	330	234	96	101	405	234	96	75
C ₁₉	100	102	236	236	101	331	236	95	103	408	236	95	77
C20	102	101	235	235	100	329	235	94	100	406	235	94	77
Average	66	101	219	219	101	308	219	89	100	393	219	68	85
* 2 <i>AI</i> _C ** <i>ΔI</i> ₁ C = *** <i>ΔI</i> ₂ C = § <i>ΔI</i> ₃ C = % Not inc	$= I_{2-\text{chloroeth}}$ $= I_{2-\text{chloroeth}}$ $= I_{2,2-\text{dichlorr}}$ $= I_{2,2,2-\text{trichl}}$ sluded in av	hyl ester $-I_{c}$ yj ester $-I_{c}$ octhyl ester $-$ loroethyl ester $verage valu$	ethyl ester; 12,2 thyl ester 12-chloroethyl - 12,2-dichlor es.	-dichloroethyl e ester oethyl ester	ster - Lethyl	ester' 12,2,2-1	richloroethyl es	er – Iethyl es	Ĺ				

5
Э
AB]
F

INCREMENTS OF RETENTION INDICES FOR METHYLENE GROUPS AND CHLORINE ATOMS, OBTAINED ON OV-351 WITH TEMPERATURE PROGRAMMING

•
>
و
2
63
Ξ
E
a.
<u>es</u>
Ö
É
8
<i>.</i>

Chain length	Ethyl	2-Chloro	ethyl		2,2-Dichl	oroethyl			2,2,2-Tric	hloroethyl			
oj n-ucia		<i>dl</i> _{CH₂}	ΣΔI _{Ci} *	<i>dI</i> _{1CI} **	ΔI _{CH2}	ΣΔI _{Ci} *	41,0,**	4I2ci***	<i>dl</i> c _{H₂}	ΣΔI _{Ci} *	4/ _{1Cl} **	412Ci ***	∆I3ci [§]
C,			449	449		555	449	106	ļ	546	449	106	6-
່ ບໍ	78%	68 ⁵⁵	439	439	66 [%]	543	439	104	65 ⁸⁸	533	439	104	- 10
°°	87%	84%	436	436	75%	531	436	95	70 ⁸⁸	516	436	95	-15
Č,	103	93	426	426	8	518	426	92	88	501	426	92	-17
ڻ د	101	92	417	417	87	504	417	87	89	489	417	87	-15
c,	66	92	410	410	95	500	410	6	93	483	410	8	-17
ຶບ	101	66	408	408	96	495	408	87	76	479	408	87	-16
່ວ	102	96	402	402	100	493	402	16	6 6	476	402	91	-17
C10	102	103	403	403	102	493	403	8	103	477	403	8	-16
C ₁₁	89	101	415	415	102	506	415	91	102	490	415	16	- 16
C ₁₂	96	103	422	422	103	513	422	91	105	4 99	422	91	- 14
C ₁₃	96	101	427	427	104	521	427	<u>9</u> 4	103	506	427	2	-15
C14	100	105	432	432	106	527	432	95	106	512	432	95	-15
C15	102	106	436	436	106	531	436	95	108	518	436	95	-13
C ₁₆	98	106	4	44	101	534	4 4	8	101	521	444	8	-13
C1.7	103	101	442	442	108	539	442	97	106	524	442	97	-15
C18	102	109	449	449	104	541	449	92	107	529	449	92	-12
C1.9	102	103	450	450	104	543	450	93	104	531	450	93	-12
C ₂₀	104	105	451	451	103	542	451	16	107	534	451	16	8-
Average	100	101	429	429	101	523	429	93	101	509	429	93	- 1 4

TABLE VII

SUMMARY AND COMPARISON OF THE RETENTION INCREMENTS PRESENTED IN TABLES V AND VI

Retention increment*	Ester			
	Ethyl	2-Chloroethyl	2,2-Dichloroethyl	2,2,2-Trichloroethyl
SE-30				
$\Delta I_{\rm CH}$	88-102 (99)	88-103 (101)	95-104 (101)	97–105 (100)
$\Sigma \Delta I_{\rm Cl}$		204–236 (219)	275–331 (308)	364-408 (393)
ΔI_{1C1}		204-236 (219)	204–236 (219)	204–236 (219)
ΔI_{2C1}			71–97 (89)	71–97 (89)
∆I _{3Cl}				75– 9 5 (85)
OV-351				
$\Delta I_{\rm CH_2}$	78-104 (100)	68-109 (101)	66-108 (101)	65-108 (101)
$\Sigma \Delta I_{\rm Cl}$		402-451 (429)	493-555 (523)	476-546 (509)
ΔI_{1Cl}		402-451 (429)	402-451 (429)	402-451 (429)
ΔI_{2C1}			87-106 (93)	87-106 (93)
ΔI_{3C1}				-8 to -17 (-14)
OV-351/SE-30*	**			
$\Sigma \Delta I_{\rm Cl}$		1.96	1.70	1.30
ΔI_{1Cl}		1.96	1.96	1.96
ΔI_{2C1}			1.04	1.04
ΔI_{3C1}				-
OV-351 - SE-	-30**			
$\Sigma \Delta I_{\rm Cl}$		210	215	116
ΔI_{1Cl}		210	210	210
4120			4	4
ΔI_{3Cl}				 99

* As in Tables V and VI.

** Based on the average values, given in parentheses.

with increasing degree of chlorination, 2,2,2-trichloroethanol¹⁵, for example, being eluted between 2,2,2-trichloroethyl pentanoate and hexanoate.

It has previously been reported¹⁶ for the pair *n*-butyl hexanoate and *n*-propyl benzoate that the retention index increase effected by the polarity of the stationary phase is much larger (approximately double) for the aromatic than for the aliphatic ester, apparently due to the increased retention contribution of the benzene ring. The same effect is shown by the four series of esters of heptanoic and benzoic acids presented in Table IV. The retention enhancements for the latter, having the same total number of carbon atoms as the former, on SE-30 are in the range 49–71 i.u., increasing to 314-378 i.u. on OV-351. The largest differences are shown by the 2,2-dichloroethyl esters.

The retention index increments for the methylene groups and the various chlorine atoms are shown in Tables V and VI, determined on SE-30 and OV-351 respectively with temperature programming. A summary and a comparison of the increments on the columns are presented in Table VII.

As expected, the methylene increments on both columns are close to 100 i.u.,

Compound	SE-30				0V-35I				04-35	I – SE-3	0	
	Σ4Ici*	AI1ci**	<i>AI</i> _{2C1} ***	AI 3ci [§]	Σ4Ici [*]	Alici**	<i>AI</i> 2ci***	41 _{3Ci} §	$\Sigma A I_{\rm Cl}^{\star}$	<i>dl</i> 1ci**	<i>dI</i> 2ci***	41 _{3Cl} §
2-Chloroethyl heptanoate 2-Chloroethyl benzoate	214 225	214 225			410 464	410 464		1 1	196 239	196 239	11	ιι
2,2-Dichloroethyl heptanoate 2,2-Dichloroethyl benzoate	300 316	214 225	86 91		500 564	410 464	90 100	1 1	200 248	196 239	40	11
2,2,2-Trichloroethyl heptanoate 2,2,2-Trichloroethyl benzoate	394 388	214 225	98 98	94 72	483 534	410 464	96 <u>0</u> 6	-17	89 146	196 239	40	- 111 - 102
		-				E						1

TABLE VIII

******* As in Table V; the increments for the heptanoic acid esters are taken from Tables V and VI and those for the benzoic acid esters from ref. 13, determined with temperature programming from 100° C at 6° C min⁻¹.

the chlorine substitution having a negligible effect, as shown previously for other series of $esters^{17-19}$.

The increments for the first, second and third chlorine atoms on SE-30 are in the ranges 204–236 (219), 71–97 (89) and 75–95 (85) i.u., with the average increments given in parentheses. On OV-351 the increments for the first chlorine atom are doubled to 402–451 (429) i.u., those for the second chlorine atom generally being in the same range as on SE-30, *viz.*, 87–106 (93) i.u. The third chlorine atom shows a reduction in retention from -8 to -17 (-14) i.u., as is evident from Tables VI and VII.

The results given above are in good accord with those for the chlorinated acetic acid esters²⁰⁻²² and 2-chloro- and 2,2,2-trichloroethyl esters of C_2-C_{10} *n*-alkanoic acids^{8,9}, a comparison between the increments of the aliphatic and aromatic esters being given in Table VIII. On both columns the increments for the first and second chlorine atoms, unlike that for the third chlorine atom, are higher with the benzoic acid esters than those with the heptanoic acid esters. The differences between the highly and weakly polar stationary phases, as presented in Table VIII, are also higher for the aromatic esters also.

From a practical point of view, the mobility of the volatile halogenated alcohols on the low-polarity columns can be decreased by esterification, even by acetylation. If polar columns are used, halogenated alcohols can be analysed by GC as their acetate esters, the relative mobility of the compounds increasing with increasing degree of halogenation.

Trace amounts of carboxylic acids occurring in several environmental and biological samples can be analysed by GC as their haloalkyl esters using a highly sensitive electron-capture detector.

ACKNOWLEDGEMENTS

The author gratefully thanks the Medica Corporation Research Foundation and the Alfred Kordelin Foundation for grants and the Academy of Finland (the National Research Council for Sciences) for financial support. Special thanks are due to Mrs. Maija Lind for valuable cooperation.

REFERENCES

- 1 I. O. O. Korhonen, J. Chromatogr., 209 (1981) 96.
- 2 I. O. O. Korhonen, J. Chromatogr., 219 (1981) 306.
- 3 J. K. Haken, B. G. Madden and I. O. O. Korhonen, J. Chromatogr., 298 (1984) 150.
- 4 I. O. O. Korhonen, J. Chromatogr., 240 (1982) 377.
- 5 I. O. O. Korhonen, J. Chromatogr., 246 (1982) 241.
- 6 I. O. O. Korhonen, J. Chromatogr., 268 (1983) 19.
- 7 I. O. O. Korhonen, J. Chromatogr., 248 (1982) 69.
- 8 K. Komárek, J. Kříž, J. Churáček and K. Tesařík, J. Chromatogr., 292 (1984) 105.
- 9 K. Komárek, L. Hornová and J. Churáček, J. Chromatogr., 252 (1982) 293.
- 10 A. Horna, K. Komárek, J. Churáček and O. Dufka, J. Chromatogr., 290 (1984) 45.
- 11 K. Komárek, L. Hornová, A. Horna and J. Churáček, J. Chromatogr., 281 (1983) 299.
- 12 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 322 (1985) 97.
- 13 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 325 (1985) 433.
- 14 G. Guiochon, Anal. Chem., 36 (1964) 661.
- 15 I. O. O. Korhonen, J. Chromatogr., 324 (1985) 181.

- 16 J. K. Haken, H. N. T. Hartley (nee Dinh) and D. Srisukh, Chromatographia, 17 (1983) 589.
- 17 J. K. Haken and I. O. O. Korhonen, J. Chromatogr., 319 (1985) 131.
- 18 J. K. Haken and I. O. O. Korhonen, J. Chromatogr., 320 (1985) 325.
- 19 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 322 (1985) 83.
- 20 J. K. Haken, B. G. Madden and I. O. O. Korhonen, J. Chromatogr., 256 (1983) 221.
- 21 I. O. O. Korhonen, J. Chromatogr., 288 (1984) 51.
- 22 I. O. O. Korhonen, J. Chromatogr., 288 (1984) 329.